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These supplementary materials are presented in order of appearance within the main paper. For complete-

ness, we briefly recall the model specification.

1S THE MODEL

Denote by yt
g the expression level of gene g D 1; : : : ; G, measured at time t D 1; : : : ; T . We model the interaction

network as a linear AR(1) process,

ytC1
g D �g C

GX
j D1

ž
jgyt

j C "t
g ; (1)

where �g is the basal expression level of gene g; ž
jg D 
jg ǰg measures the influence of gene j on gene g, with

ǰg 2 R and 
jg D 1 if j regulates g and 
jg D 0 otherwise; finally, "t
g is an idiosyncratic error term, centred

at zero and with precision parameter �g , typically assumed to be Gaussian. We augmented the model with the

parenthood (link) indicator variables � D f
jgg which will be the basis for estimating the network topology.

In order to account for the additional uncertainty when having repeated measurements we assume that the

regulation process can be captured by (1), but instead of actually observing yt
g , we have noisy measurements, xt

gr ,

such that

xt
gr D yt

g C �t
gr ; r D 1 : : : ; R ; (2)

with �t
g a zero mean error measurement term, with precision parameter �g , independent for all t; g; r . This er-

ror term is frequently assumed Gaussian; however, given that the measurement process can potentially produce

outliers, we will use a Student-t specification, St
�
�t

g j 0; �g ; �
�
, such that Var

�
�t

g

�
D � ��1

g =.� � 2/ provided the

degrees of freedom, � > 2.
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2S THE PRIOR

The likelihood for the Student-t measurement AR(1) model is,

`.‚I X/ D

GY
gD1

TY
tD1

RY
rD1

N
�
ytC1

g j �g C ž
gy t ; �g

�
N

�
xt

gr j yt
g ; !t

gr�g

�
Ga

�
!t

gr j �=2; �=2
�

: (3)

Where Y D
˚
yt

g

	
are the unobserved expression levels, X D

˚
xt

gr

	
denote their surrogate measurements and

‚ D f�; B; �; �; �; �g collects all the parameters involved, with � = f�1; : : : ; �Gg; B D
˚
ˇ0

1; : : : ; ˇ0
G

	
2 RG�G

and ˇg D fˇ1g ; : : : ; ˇGgg; � D f
ijg; � D f�1; : : : ; �Gg; and � = f�1; : : : ; �Gg.

We specify a product form (independent) prior,

 .‚/ D  .�/  .�/

24 GY
gD1

 .�g/  .ˇg/  .�g/  .�g/  .
g/

35 ; (4)

where,

 .�g/ D N.�g j 0; k/ ; (5)

 .ˇg/ D NG

�
ˇg j 0; kˇ I

�
; g D 1; : : : ; G ; (6)

 .�g/ D Ga.�g j a�; b�/ ; (7)

 .�g/ D Ga.�g j a� ; b�/ ; (8)

�.
g j �/ D

gY
j D1

Ber.
jg j �/; g D 1; : : : ; G ; (9)

 .�/ D Be.� j a�; b�/ ; (10)

 .�/ D Ga.� j a� ; b�/ : (11)

Given that the data is standardised before performing the estimation (zero mean and unitary standard devi-

ation for each time series), we set k� D kˇ D 1=4; i.e. the prior variance of any component of � and B is four. In

our experience, this is typically not over-informative for microarray data.

As mentioned in the paper, when repeated measurements are available it is easier to estimate � than �. Thus,

we set fa� ; b�g = f2; 1=100g which is renders a rather flat prior with mode at 100 and variance of 20000.

For the autoregressive precision �, we used fa�; b�g= f1=10; 1=10g. Thus setting the prior mean at one and the

variance at 10. The mode now does not exist.

Derived from the conditions given in the paper: P Œ� � 30� � 0:6 and ModeŒ�� D 15, it is straightforward to

verify that fa� ; b�g = f3:5; 0:15g.

In the absence of any prior information, we treat � as the probability of any given link to be present and thus

use the corresponding reference prior, Be.� j 1=2; 1=2/ (Bernardo and Smith, 1994, p. 315) .
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3S THE SAMPLER

AR(1) Precisions The full conditional of �g , g D 1; : : : ; G is given by

�.�g j —/ / �T=2Ca��1
g exp

�
��g

�
b� C

1

2

�
ytC1

g � �g � y t ž
g

�0�
ytC1

g � �g � y t ž
g

���
and thus can be sampled from a gamma distribution.

Constant term �g is conditionally Gaussian, with mean and precision

mg D
xytC1

g � xy t ž
g

�g C k�=T
and � 0

� D k� C T �g ;

respectively, where xytC1
g D T �1

P
t ytC1

g and xy D T �1
P

t y t .

Connectivity The overall connectivity, �, is sampled from a Be
�
� j S C a�; G2

C b� � S
�
, with S D

PG
i;j D1 
j i .

Measurement precision For each gene g D 1; : : : ; G, the measurement precision, �g are updated from a gamma

distribution Ga
�
�g j a0

� ; b0
�

�
with

a0
� D R T=2 C a� and b0

� D b� C
1

2

TX
tD1

RX
rD1

!t
gr

�
xt

gr � yt
gr

�2
:

Degrees of freedom We use a Metropolis-within-Gibbs strategy to draw a new value, �.m/, with a gamma proposal

with its mean fixed at the previous draw, �.m�1/. We control for the acceptance rate to lie around 1/3 by

tuning the proposal’s coefficient of variation, cv. Thus, we propose a new �.m/ from

Ga
�
�.m/

j cv�2; cv�2=�.m�1/
�
:

Coefficients and link probabilities The update of each indicator variable 
jg is performed jointly with all the

corresponding coefficients

ˇ W ˇa
! ˇb and 
 W 0 ! 1

with acceptance probability

˛ D min

(
�. žb/

�. ža/

q.ˇa j 
a/ q.
a/

q.ˇb j 
b/ q.
b/
; 1

)
;

where the subscripts have been removed for clarity. Given that we propose 
 symmetrically, q.
a/=q.
b/ D 1.

The Hastings ratio is then

q.ˇa j 
a/

q.ˇb j 
b/
D

�

1 � �
k

1=2

ˇ

exp

�
1

2
�b

ˇ†�1b
ˇ �b

ˇ

�
exp

�
1

2
�a

ˇ†�1a
ˇ �a

ˇ

�
ˇ̌̌
†b

ˇ

ˇ̌̌1=2

ˇ̌̌
†a

ˇ

ˇ̌̌1=2
:

with †� the covariance matrix obtained by considering only the relevant gene expression vectors. For the

opposite move i.e. switching a link off, we use the reciprocal of the ratio above.
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Non-observables These are drawn from a Gaussian distribution, N
�
yt

g j mt
g ; pt

g

�
, with location

mt
g D

�gmAR C �gmmeas

pt
g

and precision pt
g D �g

�
1 C ž2

gg

�
C �g

RX
rD1

!t
gr ;

where

mAR D
X
i¤g

ž
ig

�
yt�1

i � ž
ggyt

i

�
C ž

gg

�
yt�1

g C ytC1
g

�
and mmeas D

RX
rD1

!t
grxt

gr :

4S DATA SETS

Time traces of the data sets used in Section 4 of the paper. The linear in silico data, Figure-S 1a, comprises 16

genes measured at 41 time points. The ODE data has five genes and 50 measurements in time, Figure-S 1b.

(a) Linear interactions (b) ODE data

Figure-S 1. In silico data sets. Traces of the noiseless synthetic linear and ODE, non-linear data sets.

The Arabidopsis data set has 5 genes with 24 time points and four repetitions.

Figure-S 2. Circadian clock related genes in Arabidopsis thaliana. Gene expression repeated measurements. The
mean (dashed) and median (dot-dashed) of each time point are plotted as time series.
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4.1S MEAN CROSS ENTROPY

The score used in the paper, MxE, is simply the Kullback-Liebler divergency from any specific link to the true

network configuration, KL.y
ij j pij /,

KL.y
ij j pij/ D pij log
pij

y
ij
C .1 � pij / log

1 � pij

1 � y
ij

averaged over all possible links, i; j; D 1; : : : ; G, where pij D 1 if the link is present and zero otherwise; with the

convention of 0 log 0 D 0.

4.2S In silico DATA

As expected, when a large number of replicates are available the three models yield similar networks, for a given

threshold. However, the effect of overestimation in the regression coefficients posterior precisions is apparent

when looking at the probabilities predicted by MM: again, they are less disperse than those predicted by either

GM or SM.

Figure-S 3. ODE circadian clock in silico data set with R D 20 replicates. Number of links predicted present
in the network versus posterior link probabilities for each model considered. A link present in the ODE model is
highlighted with a cross.

4.3S In vivo DATA

To have a more or less representative sample, we calculated all the possible subsamples with three replicates, P3,

and then measured the Euclidean distance between the standard deviations of the original data and P3. These

were classified into large, medium and small, based on their empirical distribution and ten series were selected

from each region. For the 1-replicate case we used the Euclidean distance between the mean of the four replicate

data set and the single data set. Interestingly we found no apparent effect of the Euclidean distance in the retrieved

topologies and therefore we joined them when calculating the counts tables.
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