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Chapter 1
METHODS

This chapter briefly describes some of the most often encountered methods in the literature

for estimating and testing.

Point Estimation

From a frequentist perspective, the methods of maximum likelihood (MLE), moments, least

squares and unbiased estimation are described. Some shortcomings of these methods are

highlighted, as not existence or not uniqueness, lack of invariance, lack of definition in the

boundaries of the parameter space and lack of dependance on sufficient statistics, among

others.

From a Bayesian standpoint, the problem is described as a decision one, where the ac-

tion space is the parameter space; and the Bayes estimator is that rule which minimises the

posterior expected loss. To obtain an objective solution, the reference algorithm (Berger and

Bernardo, 1992a; Bernardo, 1979b), to derive an objective prior, is adopted; but the absence

of a similar technique to derive an objective loss function is pointed out. Furthermore, it is

argued that invariance of the Bayes rule is a main feature for an objective estimator and that

this property is not exhibited by the bulk of conventional Bayes estimators.

Hypothesis Testing

The frequentist Neyman and Pearson (1933) (NP) test size and the Fisherian p-value are de-

scribed. Well known criticisms to both methodologies are stated; for instance, the important

amount of information that NP method potentially leaves aside, the need of calibrating p-

values accordingly to sample and dimension sizes, or the arbitrariness in the selection of a

test statistic.

Conventional Bayes factors are argued to be the result of a specific decision theoretic

setup, with a no-continuous prior and a 0−K i loss function; which need not to be objective.
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2 1. Methods

Alternative solutions, such as fractional Bayes factors (FBF) (O’Hagan, 1997) and intrinsic

Bayes factors (IBF) (Berger and Pericchi, 2001) are also described. Objections such as the FBF

not being useful in no-regular problems, or the exposure of the IBF to the Jeffreys-Lindley-

Bartlett paradox and its lack of dependance on sufficient statistics are mentioned.



Chapter 2
INTRINSIC DISCREPANCY

Some measures of discrepancy between two probability densities are investigated in the first

part of the chapter. In the second part we explore the properties of the intrinsic losses as

introduced by Robert (1996). In the last part an objective intrinsic discrepancy (Bernardo and

Rueda, 2002) is defined, its properties explored and it is advocated to be an objective loss,

proper for point estimation and hypothesis testing problems.

Measures of divergence

In first place we follow the classification of Ali and Silvey (1966), and consider that a measure

of divergence between two probability distributions, p i (x ), i = 1,2, should be based on the

likelihood ratioφ(x ) = p1(x )/p2(x ). Then, we study the following measures:

Kullback-Leibler divergence Also known as logarithmic divergence or directed divergence,

k (p j | p i ) =
ˆ

p i (x ) log
p i (x )
p j (x )

dx .

If the distributions belong to a parametric family of models, indexed by a parameter:

p1(x ) =
�

p (x | θ ) , x ∈X1, θ ∈Θ	, p2(x ) =
�

p
�

x | ψ� , x ∈X2,ψ∈Ψ	, the KL divergence

can be written as

k (ψ | θ ) =
ˆ

X1

p (x | θ ) log
p (x | θ )
p
�

x | ψ� dx

k (θ | ψ) =
ˆ

X2

p
�

x | ψ� log
p
�

x | ψ�

p (x | θ ) dx .

The KL divergence is

• Positive and bounded from below; i.e. k (p j | p i ) ≥ 0 and k (p j | p i ) = 0 iff p i (x ) =

p j (x ), a.e.
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4 2. Intrinsic discrepancy

• Additive for conditionally independent observations. If x = {x1, . . . ,xn} are inde-

pendent observations from either p i (x )or p j (x ), then kx (p j | p i ) =
∑n

l=1 kx l (p j | p i ).

• Compatible with sufficient statistics. If t = t (x ) is a transformation of the original

data, then kx (p i | p j )≥ k t (p i | p j )with equality iff t is sufficient.

• Invariant under one to one transformations. Let
�

p (x | θ ) , x ∈X (θ ), θ ∈Θ	 be a

model and letφ =φ(θ ) be a one-to-one transformation, then

kx (φ j | φi ) = kx

�
θ −1(φ j ) | θ −1(φi )

�
.

J -divergence This symmetrized version of the KL divergence,

J (p1, p2) =
1

2

ˆ �
p1(x )−p2(x )

�
log

p1(x )
p2(x )

dx ,

was advocated by Jeffreys (1939/1961, p. 179) to derive objective priors, mainly because

its invariance properties. Besides being symmetric, it shares all the properties of the KL

divergence.

L m -norm This measure,

L m (p1,p2) =
ˆ ���p

1
m
1 (x )−p

1
m
2 (x )

���
m

dx ,

was also considered by Jeffreys to derive objective priors. He also demonstrates (Jef-

freys, 1939/1961, p. 180) that when m = 2, and under regularity conditions, J (θ ,θ +

∆θ ) ≈ 4 L 2(θ ,+∆θ ). Unlike KL and J divergences, L 2(p1,p2)/2 is a distance, also

known as Hellinger distance, and Robert (1996) proposes it as an intrinsic loss.

Chernoff’s divergence The Chernoff (1952) measure,

C (p1, p2) =max
0≤t≤1

− logψ(t )

where

ψ(t ) =
ˆ

p1(x )
�

p2(x )
p1(x )

�t

dx ,

and the related measure of Bhattacharyya (1943), that results when holding fixed t =

1/2,B(p1, p2) =− logψ(1/2), are additive for independent observations but Chernoff’s

measure requires them to be identically distributed.

In a similar fashion, Rényi (1965, 1976, p. 583) defines the informational loss of order
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α> 0, of substituting p1 by p2, when p1 is correct as

Rα(p2 | p1) =




(α−1)−1 log

�ˆ
p1(x )

�
p2(x )
p1(x )

�α
dx

�
α 6= 1

k (p2 | p1) α= 1

.

Intrinsic losses

Robert (1996) argues for the need for an objective loss function that depends only on the

sampling distribution p (x | θ ) and coines the concept of intrinsic loss, considering two can-

didates: the KL divergence and the Hellinger distance. Unlike the KL divergence, the Hellinger

distance is symmetric and well defined even for no-regular models; however it is not additive

for conditionally independent observations. These shortcomings are addressed in the next

section.

Intrinsic discrepancy between two distributions

Following Bernardo and Rueda (2002),

Definition 2.1 (Intrinsic discrepancy).

The intrinsic discrepancy, δ(p1, p2), between two densities p1(x ), x ∈ X1 y p2(x ), x ∈ X2 is

given by

δ(p1,p2) =min
n

k
�

p2(x ) | p1(x )
�

, k
�

p1(x ) | p2(x )
�o

.

If two families of densities,

M 1 ≡
�

p1
�

x | φ� , x ∈X1(φ),φ ∈Φ
	

and M 2 ≡
�

p2
�

x | ψ� , x ∈X2(φ),ψ∈Ψ
	

,

are considered, the intrinsic discrepancy is

δ∗(M 1,M 2) =min
φ∈Φ
ψ∈Ψ

δ
�

p1
�

x | φ� ,p2
�

x | ψ�
�

.

Proposition 2.1 (Properties of the intrinsic discrepancy).

Let δ(p1,p2) as in Definition 2.1, then

(i) The intrinsic discrepancy δ(p1,p2)≥ 0, with equality iff p1(x ) = p2(x ) a.e.

(ii) The intrinsic discrepancy is invariant under monotone transformations of the data. Hence,

if y = y (x ) is a one-to-one monotone transformation, then δy (p1,p2) =δx (p1,p2).
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(iii) The intrinsic discrepancy is additive for conditionally independent observations. Hence,

if x = {x1, . . . ,xn} is a random sample from either p1(x ) or p2(x ), then δn (p1, p2) =

n δx (p1,p2).

(iv) If both densities are members of a parametric family, p
�

x | ϕ�, such that p1(x ) = p
�

x | ϕ1

�

and p2(x ) = p
�

x | ϕ2

�
; then, the intrinsic discrepancy, δ(p1, p2) = δ(ϕ1,ϕ2), is in-

variant under one-to-one re-parameterizations. Thus, if ψ =ψ(ϕ) is one-to-one, then

δ
�

p
�

x | ψ1

�
, p
�

x | ψ2

��
=δ

�
ϕ(ψ1),ϕ(ψ2)

�
.

(v) The intrinsic discrepancy is a measure of the minimum amount of information –in nits–

which the observation x ∈X is expected to provide in order to discriminate between the

models p1(x ) and p2(x ).

(vi) The intrinsic discrepancy is symmetric; i.e. δ(p1, p2) =δ(p2, p1).

(vii) The intrinsic discrepancy is defined for densities with nested supports. Precisely,δ(p i , p j ) =

k (p j | p i ) ifXi ⊂Xj .

Intrinsic discrepancy loss

The intrinsic discrepancy is proposed as an appropriate objective loss function for point es-

timation and hypothesis testing.

Definition 2.2 (Intrinsic discrepancy loss).

Assume that an adequate description of the probabilistic behaviour of the random quant-

ity x , is given by the model,
�

p (x | θ ,λ) , x ∈X , θ ∈Θ,λ∈Λ	. The intrinsic discrepancy (loss)

of substituting the whole model with the restricted one, obtained whenθ = θ 0, is the intrinsic

discrepancy between p (x | θ ,λ) and the family of densities
�

p (x | θ 0,λ) ,λ∈Λ	, i.e.

δ∗(θ ,λ;θ 0) = inf
λ0∈Λ

δ(θ ,λ;θ 0,λ0).

Where

δ(θ ,λ;θ 0,λ0) =min
n

k (θ 0,λ0 | θ ,λ), k (θ ,λ | θ 0,λ0)
o

,

is the minimum of the directed divergences.

Proposition 2.2 (Properties of the intrinsic discrepancy).

Consider the model
�

p (x | θ ,λ) , x ∈X , θ ∈ θ , λ∈Λ	 and assume that θ is the parameter of

interest. The intrinsic discrepancy, δ∗(θ ,λ;θ 0) is
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(i) Invariant under one-to-one transformations of the data; i.e. if y = y (x ) is a monotone

transformation, then δy (θ ,θ 0;λ) =δx (θ ,θ 0;λ).

(ii) Compatible with sufficient statistics. If t = t (x ) is sufficient for p (x | θ ,λ), thenδ∗t (θ ,λ;θ 0) =

δ∗x (θ ,λ;θ 0).

(iii) Additive in the sense that if data x = {x1, . . . ,xn} are conditionally independent, then

δ∗x (θ ,λ;θ 0) =
∑
δ∗x i
(θ ,λ;θ 0). Moreover, if x are iid., then δ∗x (θ ,λ;θ 0) = n δ∗x i

(θ ,λ;θ 0).

(iv) Invariant under the choice of the nuisance. In fact, ifω=ω(λ) is a monotone re-parametrization

of λ, then δ∗(θ ,ω;θ 0) =δ∗
�
θ ,λ(ω);θ 0

�
.

Some results are derived to aid in the computation of the intrinsic discrepancy

Proposition 2.3 (Intrinsic discrepancy in a regular model).

Let
�

p (x | θ ,λ) , x ∈X , θ ∈Θ, λ∈Λ	 be a probability model that meets the regularity condi-

tions. Then

δ∗(θ ,λ;θ 0) = inf
λ0∈Λ

δ(θ ,λ;θ 0,λ0)

=min

�
inf
λ0∈Λ

k (θ ,λ | θ 0,λ0), inf
λ0∈Λ

k (θ 0,λ0 | θ ,λ)
�

.

Corolary 2.1.

Let
�

p (x | θ ,λ) , x ∈X , θ ∈Θ, λ∈Λ	 be a probabilistic model from the exponential family.

Then,

δ∗(θ ,λ;θ 0) = inf
λ0∈Λ

δ(θ ,λ;θ 0,λ0)

=min

�
inf
λ0∈Λ

k (θ ,λ | θ 0,λ0), inf
λ0∈Λ

k (θ 0,λ0 | θ ,λ)
�

,

with

k (ψj | ψi ) =
ˆ

p
�

x | ψi

�
log

p
�

x | ψi

�

p
�

x | ψj

� dx

=M (ψi )−M (ψj )+
�
ψt

j −ψt
i

�
∇M (ψi ) ,

whereψk = {θ k ,λk } , k = 0, 1, M (ψ) = log a (ψ) and∇M (ψ) = ∂M (ψ)/∂ψ.

Under some conditions, the intrinsic discrepancy is convex.
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Proposition 2.4 (Convexity of the intrinsic discrepancy).

Let
�

p (x | θ ) , x ∈X , θ ∈Θ	 be a probability model. The intrinsic discrepancy,δ(θ ;θ 0), is con-

vex iff the log-likelihood ratio is convex in θ .

Finally, recalling that in a decision problem the parameter of interest is that which enters

the loss function, define (Bernardo and Rueda, 2002)

Definition 2.3 (Intrinsic statistic).

Let
�

p (x | θ ,λ) , x ∈X , θ ∈Θ,λ∈Λ	 be a parametric model that adequately describes the

probabilistic behaviour of the random quantity x and let δ∗(θ ,λ;θ 0) as in Definition 2.2. We

say that d (θ 0 | x ) is the posterior expected intrinsic discrepancy or intrinsic statistic if

d (θ 0 | x ) =
ˆ

Λ

ˆ

Θ
δ∗(θ ,λ;θ 0)πδ∗(θ ,λ | x ) dθ dλ,

whereπδ∗(θ ,λ | x ) is the reference posterior for the parameters of the model p (x | θ ,λ)when

δ∗(θ ,λ;θ 0) is the parameter of interest.



Chapter 3
INTRINSIC ESTIMATION
AND HYPOTHESIS
TESTING

In this chapter the intrinsic statistic is applied to the problems of point estimation and hypo-

thesis testing. The entailed definitions of the intrinsic estimator (Bernardo and Juárez, 2003)

and the Bayesian reference criterion (Bernardo, 1999) are presented and their properties ana-

lysed. Both concepts are implemented in a number of basic statistical models.

Intrinsic estimation

The intrinsic statistic, d (θ 0 | x ), is a measure (in natural informational units) of the strength

of the evidence (conveyed by the data) against using p (x | θ 0,λ) as a proxy for p (x | θ ,λ).

Evidently, the best proxy is attained at the value which yields the minimum loss; thus is nat-

ural to define (Bernardo and Juárez, 2003).

Definition 3.1 (Intrinsic estimator).

LetM ≡ �p (x | θ ,λ) , x ∈X , θ ∈Θ,λ∈Λ	be a parametric model which adequately describes

the probabilistic behaviour of the random quantity x . We call the intrinsic estimator, θ ∗ = θ ∗(x ),

of the parameter θ to that value that minimises the intrinsic statistic. Thence,

θ ∗ = θ ∗(x ) = arg min
θ̃∈Θ

d (θ̃ | x ).

The intrinsic estimator is well defined, regardless of the parameter vector dimension,

and, it exists and is unique under mild conditions, pertaining the convexity of the intrinsic

discrepancy.

9



10 3. Intrinsic estimation and hypothesis testing

Proposition 3.1 (Uniqueness of the intrinsic estimator).

The intrinsic estimator, θ ∗(x ), exists and is unique if the parameter space is strictly convex.

Furthermore, the intrinsic estimator possess a number of nice properties.

Proposition 3.2 (Properties of the intrinsic estimator).

Derived from the intrinsic statistic, the intrinsic estimator

(i) Is Invariant under monotone transformations

(ii) Is compatible with sufficient statistics

(iii) Is invariant under the choice of the nuisance parameter.

(iv) Is invariant under monotone transformations of the data.

As expected, under regularity conditions, the intrinsic estimator and the MLE are asymp-

totically equivalent.

Proposition 3.3 (Asymptotic behaviour of the intrinsic estimator).

Consider a random sample, z = {x 1, . . . , x n}, from a parametric regular model,

¦
p (x | θ ,λ) , x ∈X , θ ∈Θ⊂Rk ,λ∈Λ

©
.

Then, the MLE, θ̂ , is an asymptotic approximation to the intrinsic estimator; i.e. for sufficiently

large n, θ ∗ ≈ θ̂ .

Intrinsic testing

The intrinsic statistic (Bernardo and Rueda, 2002) is a measure –in nits– of the expected pos-

terior amount of information required to recover the model, which has been assumed cor-

rect, from its closest approximation within the class of models, M 0 ≡
�

p (x | θ 0,λ) ,λ∈Λ	; it

is a measure of the strength of the evidence provided by the data against M 0. It is a test stat-

istic for the (null) hypothesis H0 ≡ {θ = θ 0}. Thus, H0 must be rejected iff d (θ 0 | x )> d ∗, for

some threshold value d ∗.

Definition 3.2 (Bayesian reference criterion).

Assume that the parametric model, M ≡ �p (x | θ ,λ) , x ∈X , θ ∈Θ,λ∈Λ	, is an adequate

description of the probabilistic behaviour of the random quantity x , and consider the value

θ = θ 0 amongst those which continue being possible after observing x . To decide if p (x | θ 0,λ)

can be used as an acceptable proxy for p (x | θ ,λ), use the Bayesian reference criterion (BRC)



11

i) Calculate the intrinsic discrepancy,

δ∗(θ ,λ;θ 0) =min
λ0∈Λ

δ(θ ,λ;θ 0,λ0).

ii) Calculate the intrinsic statistic,

d (θ 0 | x ) =
¨
δ∗(θ ,λ;θ 0)πδ(θ ,λ | x ) dλ dθ ;

whereπδ(θ ,λ | x ), is the reference posterior whenδ(θ ,λ;θ 0) is the parameter of interest.

iii) If a formal decision is required, reject H0 ≡ {θ = θ 0} iff d (θ 0 | x ) > d ∗, form some

threshold value d ∗; which, for scientific communication might be reported as: d ∗ ≈ 1,

no evidence against H0; d ∗ ≈ 2.5, mild evidence against H0; and d ∗ > 5, data provide

strong evidence against the null.

Intrinsic hypothesis testing inherits the properties of the intrinsic statistic.

Proposition 3.4 (Properties of the intrinsic statistic).

Inherited from the properties of the intrinsic discrepancy and the reference posterior, the in-

trinsic statistic, d (θ 0 | x ), is:

(i) Invariant under monotone transformations of the parameter of interest,

(ii) Compatible with sufficient statistics.

(iii) Invariant under the choice of the nuisance parameter.

(iv) Invariant under monotone transformations of the data.

A simple, powerful approximation to the intrinsic statistic is derived, for regular models.

Proposition 3.5 (Asymptotical approximation under regularity conditions).

Let
�

p (x | θ ,λ) , x ∈X , θ ∈Θ⊂ℜ,λ∈Λ	 be a parametric model such that the (marginal) pos-

terior distribution of θ is regular. If the intrinsic discrepancy, δ∗(θ ,λ;θ0) = δ∗(θ ;θ0), then the

intrinsic statistic can be well approximated by

d (θ0 | x )≈δ∗(θ̃ ;θ0)+
1

2
,

where θ̃ is the mode of the asymptotic posterior of θ .

The second part of the chapter is devoted to the implementation of these concepts and

results to a list of models of extensive use in the literature.



Chapter 4
EVALUATION AND
COMPARISONS

From a subjectivistic standpoint, a Bayes rule is derived for the specific problem at hand and

is optimal for it; thus a comparison among different Bayes rules, unless directed towards a

sensibility analysis, is senseless. From an objective viewpoint, however, as the Bayes rule is

derived for a generic use, with no specific aim in mind, comparison between alternatives is

sensible. In this chapter comparisons with frequentist and Bayesian alternatives and evalu-

ation under homogenous conditions are performed.

Point estimation

Under mild conditions, the intrinsic estimator is admissible (under intrinsic discrepancy

loss)

Corolary 4.1.

Consider the continuous parametric model,
�

p (x | θ ) , x ∈X , θ ∈Θ	 and assume that the

parameter space,Θ⊂Rp , is convex. Then, the intrinsic estimator is admissible.

In particular, if p (x | θ ) belongs to the exponential family, the intrinsic estimator, θ ∗, is

admissible.

In the other hand, under regularity conditions the risk of the intrinsic estimator is asymp-

totically constant.

Proposition 4.1 (Asymptotic risk under regularity conditions).

Suppose that θ ∗(x ) is the intrinsic estimator of the parameter θ , which indexes the regular

model
�

p (x | θ ) , x ∈X ,θ ∈Θ	. Under these conditions, the risk of the intrinsic estimator, un-

der intrinsic discrepancy loss, Rθ ∗(θ ), is asymptotically constant and equal to 1/2.

12
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Hypothesis testing

Unlike point estimation, frequentist and Bayesian solutions to precise hypothesis testing

usually differ. Indeed, p-values can be criticised for i) an arbitrary selection of the text stat-

istic; ii) not being a measure of the evidence against the null; iii) having arbitrary threshold

values; iv) overestimating the significance; v) potentially lead to controversial answers and

vi) not being a general procedure.

Nevertheless, it is possible to reach some agreement between the BRC and the test de-

rived from the generalised likelihood ratio.

Proposition 4.2 (Asymptotic equivalence of the BRC).

Consider the regular model
�

p (x | θ ) , x ∈X , θ ∈Θ⊂R	, and assume the programme of Defin-

ition 3.2 is used to test the (null) hypothesis H0 ≡ {θ = θ0}. Then, asymptotically H0 will be

rejected with a p-value of α iff α= 2Φ(
p

2 d ∗−1), where Φ(z ) is the area to the right of z under

a standard normal curve.
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